Global Trend in Industrial Refrigeration

Hernan Hidalgo Global Account Manager – Danfoss Ind. Refrigeration London Sep 30 2019

Agenda

Industrial Refrigeration systems had enjoyed a higher degree of stability in terms of refrigerant choices.

Ammonia has been the predominant choice thanks to efficiency and heat transfer properties. Subcritical CO2 has been on the rise in Europe and North America

System Optimization has been key to development but also charge reduction in NH3 systems

In some developing economies, Urbanization is playing a significant role in the design and choice of refrigeration systems.

In some applications, Transcritical CO2 may be consider a good option.

01. Refrigeration System Developments -Industry reaction

Blending in of technologies and systems

How to reduce NH3 charge ?

Variables to consider

System Design

- Capacities: 1 to 5 MW / 300TR to 1500 TR
- Performance and Efficiency
- Maximum pressure ratings
- Components availability
- Efficiency of evaporators/system due to fouling. (e.g. Oil)
- Operators and contractors learning curve

Refrigeration cycles with CO₂ - General Overview

Transcritical refrigeration proces Influence of compressor outlet pressure

Assessment of Emerging Systems Performance vs Traditonal

Fair Calculations have been made to provide an impartial assessment of industrial Ref Systems. (White paper presented at IRC Montreal 2019, Thomas Lund-Danfoss)

- Two Stage R717, Pump circulation (2 Stage) Baseline
- R744/R717 cascade pump circulation
- Transcritical R744 DX Operation
- Transcritical R744 pump circulation
- Two stage R507, Pump circulation

Calculations performed on three different latitudes 365 day

Table 1. Mean ambient temperatures for	for chosen locations
--	----------------------

	Dry bulb temperature		Wet bulb tem			
	Min	Max	average	Min	Max	Average
Rome	- 4.0°C	31.8°C	15.8°C	- 6.0°C	25.8°C	13.4°C
Frankfurt	- 8.9°C	33.6°C	10.1°C	- 9.3°C	22.4°C	7.7°C
Oslo	- 17.0°C	28.2°C	6.7°C	- 17.2°C	20.5°C	4.4°C

Compressor types used for calculations at different loads

Table 2. Selected compressor types

Load	R744 TC DX	R744 TC FL	R717 2ST	R744/R717	R507 2ST
50/150	Recip/Recip	Recip/Recip	Recip/Recip	Recip/Recip	Recip/Recip
150/450	Recip/Recip	Recip/Recip	Recip/Recip	Recip/Recip	Recip/Screw
300/900	Recip/Recip	Recip/Recip	Screw/Screw	Recip/Screw	Screw/Screw
900/2700	Recip/Recip	Recip/Recip	Screw/Screw	Recip/Screw	Screw/Screw

Power Consumption comparison with NH3 as a baseline

Table 11. Power consumption relative to two-stage R717. Optimized systems

-	R744 TC DX	R744 TC FL	R717 2ST	R744/R717	R507 2ST
Rome	129%	132%	100%	105%	106%
Frankfurt	113%	111%	100%	103%	104%
Oslo	108%	104%	100%	103%	103%

Dry cooler with no correction for parallel compression

Power Consumption comparison with NH3 as a baseline

Bar graph TC flooded (recirculated) in warm climate does not include efficiency gain from parallel compression due to software constraints

	CO2 TC	CO2 TC	R717 2ST	Cascade	R507 2ST
	DX	Flooded			
Rome	129%	121%	100%	105%	106%
Frankfurt	113%	105%	100%	103%	104%
Oslo	108%	100%	100%	103%	103%

Table shows best possible results with adiabatic coolers and manual estimation with parallel compression for TC

Figure 1: Power consumption relative to two-stage R717. Optimized systems - dry cooler

03. Typical Industrial Refrigeration system types

The traditional NH3 pump circulation system

NH3/CO2 cascade system

Pump circulation and hotgas defrost

The key elements

Level Control of recirculators – Similar to NH3 systems

Static Height

• Calculations dffer from those in NH3 systems

Communication. Integration with central compressor package controllers and evaporators is key to balance the system

Hotgas defrost is by far the most efficient method compared to

Electric defrost: ~ ¼ of the efficiency

Glycol interlace: 1/2 of the efficiency

05. Danfoss Industrial Pumped System

2c) Hotgas supply for defrost

Sub critical pressures

The pressure in the sub critical system must be controlled **ALWAYS** Focus on **controlled** and **safe** injection

- Controlled defrost pressure between 7-12 degr.C
- Take care of long lines and pressure loss (1 bar ~ 1 K)
- Hotgas supply pressure to be controlled
- Back up safety needed (internal pressure relief)
- Final safety: external pressure blow off

OP. Conclusions

NH3 (ammonia) is still the most efficient refrigerant for Industrial Systems going forward

NH3 charge reduction (at same or better efficiency) remains an obvious goal and offer a significant lower regulatory burden

NH3/CO2, NH3 low charge or CO2 TC systems are possible options.

Commercial and Industrial CO2 TC systems are different-both due to different performance, lifetime, reliability and safety expectations!

Transparent comparison of energy efficiency of different system types is extremely important!

6

CO2 transcritical pump systems close the gap for mid size plant capacities when NH3 is not considered in the first place

The connection of the Industrial pump systems to a transcritical cycle world however demands some industry efforts

OEMs are investing in solutions to make these systems easier accessible

Larger transcritical CO2 compressor capacities are critical for further development of CO2 TC applications in Industrial Refrigeration

10

The viability of CO2 TC Systems in Industrial Refrigeration applications should become more clear in the next few years.